Skip to main content

Keys

To perform actions using an account and private-public key pairs with Fluid.js, you need an implementation of the Key class, which provides an abstraction around the signing functions of an account. There are multiple implementations available:

You can also create a custom signing solution by extending the base Key class.

RawKey

The most basic implementation of a Key is a RawKey, which is created using a plain private key. RawKey wraps the 32 bytes of a private key and supplies a corresponding public key:


_9
import { RawKey } from '@terra-money/terra.js';
_9
import {randomBytes} from 'crypto'
_9
let see = console.log;
_9
_9
const raw_key = new RawKey(randomBytes(32));
_9
_9
see(raw_key.publicKey)//SimplePublicKey { key: 'AlNdglClnFJMwdeFGlfFTAwbx7rxKxWbgN/lwj5mQ3vw' }
_9
see(raw_key.privateKey)//<Buffer 53 e2 53 0b 29 c4 9d 54 b3 66 a4 61 7b d3 e2 6e 4c e5 41 cd 12 a6 e9 27 8a 97 61 1c 55 6e cd 4c>
_9
see(raw_key.accAddress)//terra1ptj88nsljjr9agx07hahu6etv43acksy2q44sd

MnemonicKey

A MnemonicKey derives itself from a 24-word BIP-39 mnemonic as opposed to the bytes of a private key. A MnemonicKey has various levels of definition:

  • Supply no arguments for the mnemonic to be randomly generated ( effectively generating a random key ).
  • Supply only a 24-word BIP-39 mnemonic to generate a corresponding key.
  • Supply a full HD path (using either a random or particular mnenomic).

_28
import { MnemonicKey } from '@terra-money/terra.js';
_28
const see = console.log;
_28
_28
const MNE_KEY_RANDOM = new MnemonicKey();
_28
_28
see(MNE_KEY_RANDOM.mnemonic) // famous { ... } myth world size
_28
see(MNE_KEY_RANDOM.privateKey) // <Buffer 4f e5 { ... } 51 a4 41 9c>
_28
see(MNE_KEY_RANDOM.publicKey) // SimplePublicKey { key: 'A8TNSJhn6gGHgY2ohJnkOaZz7Y0FaW/QeytGBaqCLIJU' }
_28
see(MNE_KEY_RANDOM.accAddress) // terra1l63e8q7yjyd77qanwfgvl43ulagf34a2xzcuv4
_28
_28
_28
const MNE_KEY_EXACT = new MnemonicKey({
_28
mnemonic: "squirrel future level fan world organ daring thing color orange sausage cross fault interest blast wink audit unfair satoshi solution track indoor sun edit",
_28
});
_28
_28
const MNE_KEY_RANDOM_WITH_HD_PATH = new MnemonicKey({
_28
// mnemonic: "", // optional, will be random if not provided
_28
coinType: 330, // optional, default
_28
account : 0, // optional, default
_28
index : 0, // optional, default
_28
});
_28
_28
const MNE_KEY_FULLY_RESOLVED = new MnemonicKey({
_28
mnemonic: "squirrel future level fan world organ daring thing color orange sausage cross fault interest blast wink audit unfair satoshi solution track indoor sun edit",
_28
coinType: 330,
_28
account : 0,
_28
index : 0,
_28
});

Specifying an HD path

MnemonicKey can used to recover a wallet with a particular BIP44 HD path: m/44'/${coinType}'/${account}'/0/${index}.

HD keys

As per Cosmos HD Key Derivation :

Cosmos blockchains support hierarchical deterministic key generation (HD keys) for deriving multiple cryptographic keypairs from a single secret value. This allows the user to use different keypairs for different accounts on one blockchain and create accounts on multiple blockchains without having to manage multiple secrets.

For example, to recover a mnemonic with the old Fluid wallet HD path using coin type for ATOM (118):


_4
const mne_key = new MnemonicKey({
_4
mnemonic: "[ Your BIP39 mnemonic ]",
_4
coinType: 118 // <--------- Cosmos' coin type ( Fluid had inherited initially )
_4
});

  • BIP-39 Mnemonics

  • Coin Types Numbers 330 and 118 above refer to "coin-types" for Cosmos and Fluid blockchains accordingly. These numbers are defined according to the BIP044 standard. You can find more information here .

Custom key implementation

If you need to write your own key management solution, you will need to subclass the abstract Key class and provide your own signing function. Instead of exposing details pertaining to your private key, you can specify a sign() function that forwards the signing request to a server or to a hardware wallet. The remaining functions related to signing (createSignature() and signTx()) are automatically provided and use sign() underneath.

The following code listing is close to the implementation of RawKey, which illustrates how to write a custom Key:


_32
import SHA256 from 'crypto-js/sha256';
_32
import * as secp256k1 from 'secp256k1';
_32
import { Key } from '@terra-money/terra.js';
_32
_32
/**
_32
* An implementation of the Key interfaces that uses a raw private key.
_32
*/
_32
export class NaiveCustomImplementation extends Key {
_32
_32
/**
_32
* Raw private key, in bytes.
_32
*/
_32
public privateKey: Buffer;
_32
_32
constructor(privateKey: Buffer) {
_32
const publicKey = secp256k1.publicKeyCreate(
_32
new Uint8Array(privateKey),
_32
true
_32
);
_32
super(new SimplePublicKey(Buffer.from(publicKey).toString('base64')));
_32
this.privateKey = privateKey;
_32
}
_32
_32
public sign(payload: Buffer): Promise<Buffer> {
_32
const hash = Buffer.from(SHA256(payload.toString()).toString(), 'hex');
_32
const { signature } = secp256k1.ecdsaSign(
_32
Uint8Array.from(hash),
_32
Uint8Array.from(this.privateKey)
_32
);
_32
return new Promise(()=>{Buffer.from(signature)});
_32
}
_32
}

Note that you must call super() with the public key to generate the relevant account and validator public keys associated with your key.